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Zhao, Baiteng, Salomon A. Stavchansky, Robert A.
Bowden, and Phillip D. Bowman. Effect of interleukin-1�
and tumor necrosis factor-� on gene expression in human
endothelial cells. Am J Physiol Cell Physiol 284:
C1577–C1583, 2003. First published January 29, 2003;
10.1152/ajpcell.00243.2002.—Interleukin-1� (IL-1�) and tu-
mor necrosis factor-� (TNF-�) are two major cytokines that
rise to relatively high levels during systemic inflammation,
and the endothelial cell (EC) response to these cytokines may
explain some of the dysfunction that occurs. To better under-
stand the cytokine-induced responses of EC at the gene
expression level, human umbilical vein EC were exposed to
IL-1� or TNF-� for various times and subjected to cDNA
microarray analyses to study alterations in their mRNA
expression. Of �4,000 genes on the microarray, expression
levels of 33 and 58 genes appeared to be affected by treat-
ment with IL-1� and TNF-�, respectively; 25 of these genes
responded to both treatments. These results suggest that the
effects of IL-1� and TNF-� on EC are redundant and that it
may be necessary to suppress both cytokines simultaneously
to ameliorate the systemic response.
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ENDOTHELIAL CELLS (EC) lining all blood vessels appear
to play an important role during systemic inflamma-
tory responses because of their unique position and
immediate exposure to inflammatory mediators. They
are known to respond to various stimuli, in part by
changing the gene expression for cytokines, adhesion
molecules, procoagulation factors, and other proteins.
Endothelial dysfunction in systemic inflammation may
result in disseminated intravascular coagulation and
vascular leakage (12, 16, 23), which may lead to devel-
opment of multiple organ failure and death. The
present information on the response of EC to inflam-
matory stimuli remains limited. A comprehensive un-
derstanding of the response of EC to inflammatory
mediators may lead to new means for developing drugs
for intervention. The recent modest success in reducing
mortality in sepsis with activated protein C, which
directly effects the EC and its function in coagulopa-

thy, points to its role in the systemic inflammatory
response (14).

We previously examined the response of human um-
bilical vein EC (HUVEC) to gram-negative bacterial
lipopolysaccharide (LPS) and found that many genes
involving various cellular functions were activated at
different times (26). In this study, we explored the
response of HUVEC to the proinflammatory mediators
interleukin (IL)-1� (IL-1�) and tumor necrosis factor-�
(TNF-�), which are secreted by monocytes and macro-
phages during systemic inflammatory reactions after
infection, inflammation, and tissue damage (18, 25).
Their plasma levels correlate significantly with the
severity of septic shock and multiple organ failure (2, 3,
11), and they share many biological effects and have
been implicated in several acute and chronic patholog-
ical states. However, attempts to blunt the systemic
inflammatory response by blocking the effects of IL-1�
or TNF-� with receptor agonists or antibodies in severe
sepsis have not been successful in reducing overall
mortality rate (5, 20). Possible reasons for the ineffec-
tiveness of these trials may include the following: 1)
The biological functions of IL-1� and TNF-� overlap
and can complement each other (8). Blocking only one
mediator may not effectively reduce the overall inflam-
matory responses. 2) IL-1� and TNF-� produce effects
at an early stage of inflammation, and the use of their
inhibitory reagents at a later stage may not reverse the
more damaging events initiated by them. 3) IL-1� and
TNF-� may not represent the best targets for interven-
tion in systemic inflammatory response. Other media-
tors initiated by them with as yet unknown functions
may be better targets.

Therefore, to better understand the EC response to
inflammation, we used primary HUVEC with cDNA
microarrays containing �4,000 known human genes to
compare the effects of IL-1� and TNF-� on the alter-
ations of gene expression in EC. About 1% of all genes
tested showed significant alterations in mRNA expres-
sion levels after stimulation of IL-1� or TNF-� in EC
during a 24-h period. Many of the affected genes ap-
peared in both treatments.
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MATERIALS AND METHODS

EC and treatments. EC from two to four human umbilical
veins were harvested by collagenase treatment (133 mg/ml;
Roche Molecular Biochemicals, Indianapolis IN), pooled, and
seeded in 0.2% gelatin-coated tissue culture flasks in medium
199 containing EC growth supplement (50 �g/ml; Collabora-
tive Biomedical Products, Bedford, MA), penicillin (100
U/ml), streptomycin (100 �g/ml), amphotericin B (0.25 �g/ml;
Life Technologies, Gaithersburg, MD), and 20% fetal calf
serum (Hyclone). The cells were cultured at 37°C in 95%
air-5% CO2.

Primary cultured HUVEC were seeded 1:1 onto gelatin-
coated six-well tissue culture plates and, on confluence, were
treated with TNF-� (10 ng/ml; Research Diagnostics,
Flanders, NJ) or IL-1� (10 U/ml; Roche Molecular Biochemi-
cals) for 1, 4, 7, 12, or 24 h before harvest of total cellular
RNA and supernatants. Control cells were treated with the
same medium without stimuli for 12 h. Cells in each treat-
ment condition were incubated in duplicate, and each was
analyzed with a microarray; cells treated with IL-1� for 12
and 24 h were incubated singularly.

In a nuclear factor �B (NF-�B) inhibition experiment, cells
were pretreated with the NF-�B inhibitory peptide SN50 or
the inactive control peptide SN50M (Calbiochem, La Jolla,
CA) at 50 �M for 1 h before the addition of a stimulus [LPS
(50 ng/ml), IL-1� (10 U/ml), or TNF-� (10 ng/ml)] for another
4 h. The parallel positive controls were subjected to the same
medium for 1 h without a pretreatment peptide and then
exposed to one of the three stimuli for 4 h. A negative control
(without pretreatment or stimulus) was incubated for 5 h. By
the end of treatments, cell culture supernatants were col-
lected for measurement of secreted monocyte chemoattrac-
tant protein type 1 (MCP-1) and IL-8.

RNA isolation, cDNA production, microarray hybridiza-
tion, and image acquisition. RNA isolation, cDNA produc-
tion, microarray hybridization, and image acquisition were
carried out as described elsewhere (26). Briefly, total RNA
was isolated from cells with TriReagent (Molecular Research
Center, Cincinnati, OH) according to the manufacturer’s
instructions. Then 2 �g of total RNA were reverse tran-
scribed into radiolabeled cDNA with [33P]dATP (10 mCi/
mmol; Amersham/Phamacia, Arlington Heights, IL). Mi-
croarrays containing �4,000 known human genes (Gene-
Filters GF211 Release I, Research Genetics) were hybridized
with the labeled cDNA according to the manufacturer’s pro-
tocol. The hybridized microarrays were then exposed to a
phosphorimaging screen (Packard Instruments, Meridian,
CT). After appropriate exposure, high-resolution images
were obtained by scanning phosphorimaging screen with a
Cyclone scanner (Packard Instruments). The resulting im-
ages were analyzed with Pathways 3.0 software (Research
Genetics).

Data analysis. Data analysis was performed as previously
described (26). Briefly, the intensity of each clone on the
microarray was quantitatively analyzed and normalized.
Then a statistical analysis, Chen’s test (4), was used to
determine whether the expression ratio (ratio of treated to
unexposed cells) of any gene deviated outside the 99.9%
confidence interval for chance-observed magnitudes. The lim-
its of this interval were taken as the screening threshold to
identify genes with likely-altered expression.

Expression ratios of these presumably up- or downregu-
lated genes were also used in clustering analysis with Clus-
ter and Treeview programs (Michael Eisen, Stanford Univer-
sity, genome-WWW.stanford.edu). These programs allow
genes with similar expression patterns to be grouped to-

gether and displayed in colors representing induction and
suppression.

Real-time RT-PCR. Real-time PCRs were performed with 1
�g of total RNA from the same samples used for microarray
using a LightCycler thermal cycler (Idaho Technology, Salt
Lake City, UT) as previously described (26). Briefly, total
RNA was reverse transcribed to cDNA with Superscript II
reverse transcriptase and poly(dT) priming (Life Technolo-
gies), and 1 �l of cDNA solution was amplified with a primer
set for each gene listed below. The amplification reaction was
stopped at the exponential range, and all the resultant PCR
products were displayed with gel electrophoresis on 2% aga-
rose containing 1:10,000 SYBR gold nucleic acid stain (Mo-
lecular Probes, Portland, OR). The gene-specific primers and
the size of the PCR products were as follows: sense and
antisense for �-actin (131 bp), CCTCCAGCATGAAAG-
TCTCTGC (sense) and AGTGTTCAAGTCTTCGGAGTTTGG
(antisense) for MCP-1 (313 bp), ATGACTTCCAAGCTGGC-
CGTGGCT (sense) and TCTCAGCCCTCTTCAAAAACTTCTC
(antisense) for IL-8 (289 bp), CAAACCGAAGTCATAGCCA-
CACTC (sense) and TCTCCTAAGCGATGCTCAAACAC (anti-
sense) for GRO1 (251 bp), and acaaatcagacggcagcactg (sense)
and GGCACCTCTTTTTCATAAGGGG (antisense) for plasmin-
ogen activator inhibitor type 1 (PAI-1, 169 bp).

ELISA. Cell culture supernatants were collected at the end
of treatment and stored at �20°C until analyzed by ELISA
for IL-1�, MCP-1, and IL-8 (R & D Systems, Minneapolis,
MN). Samples were assayed according to the manufacturer’s
instructions. The detection sensitivity is 1 pg/ml for IL-1�
and 5 pg/ml for MCP-1 and IL-8 in cell culture media. Data
were analyzed with the Tamhane T2 test using SPSS soft-
ware.

RESULTS

Assessment of the reproducibility of the microarrays.
To assess the reproducibility of the results obtained
from these cDNA microarrays, duplicate samples la-
beled and hybridized on two microarrays from the
same treatment were compared (Fig. 1A). The normal-
ized intensities of any clone from duplicate samples
have a ratio approaching 1. The two parallel lines in
Fig. 1 were the screening thresholds as described in
Data analysis. Only clones falling above or below the
lines were considered to have different expression be-
tween samples. Five clones (0.1% of all clones) showed
expression difference between the same duplicate sam-
ples, i.e., the expected false rate. Comparison between
a single control replicate and a single 4-h TNF-�-
treated sample replicate resulted in more gene expres-
sion changes at greater deviations (Fig. 1B). For actual
sample screening, microarray duplicate means were
plotted on the axes when duplicates were available.

Identification of differentially expressed genes in-
duced by IL-1�. To examine the EC response to IL-1�
at the level of gene expression, confluent HUVEC cul-
tured in six-well tissue culture plates were given fresh
medium with or without 10 U/ml recombinant human
IL-1� and incubated for various times. At the end of
treatment, total RNA was isolated and subjected to
cDNA microarray analysis. A total of 33 genes with
expression ratios beyond screening thresholds at 99.9%
confidence limits during 24 h of stimulation were iden-
tified as responsive to IL-1� in EC. These genes are
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clustered in Fig. 2 on the basis of the similarity of their
expression patterns with Cluster and Treeview pro-
grams.

The number of genes with changed expression levels
at each time point is shown in Fig. 3. The mRNA levels
of 11 genes (33% of 33) were changed beyond the
screening threshold after 1 h of stimulation of IL-1�,
but most of them recovered to control levels within
24 h. The other 22 genes were affected at later times
and had different induction or repression patterns.
Some of these genes displayed a short temporal expres-
sion disturbance; the others apparently remained
changed for �24 h. According to fold changes, the most
upregulated genes are the CXC-type chemokine IL-8
and the CC-type chemokine MCP-1, which induce ex-
travasation of neutrophiles and mononuclear cells, re-
spectively. These two proinflammatory chemokines
were upregulated as early as 1 h and sustained for up
to 24 h. Only two genes (PRKAR2B and HMGIY) ap-
peared suppressed in EC by IL-1� treatment. Expres-
sion of some genes known to be involved in the re-

sponse of EC in inflammation provides a measure of
confidence of this screening technique.

Gene expression profiling of TNF-�-affected genes. To
examine the endothelial response to TNF-�, the same
experimental procedure was performed using TNF-�
(10 ng/ml) in place of IL-1�. Microarray analysis iden-
tified 58 genes with mRNA expression ratios (ratio of
exposed to unexposed samples) that changed beyond
screening thresholds in human EC after TNF-� stim-
ulation. They were clustered together with the genes
identified from the IL-1� experiment and displayed in
Fig. 2. The number of these identified genes at differ-
ent times is shown in Fig. 3. At 1 and 4 h, fewer genes
were affected by TNF-� than by IL-1�. Only five genes
(9% of 58 genes) were upregulated within 1 h of treat-
ment. Most genes affected by TNF-� were identified at
7 and 24 h. Nine genes (15% of 58 genes) appeared
downregulated over a 24-h period.

IL-8 and MCP-1 showed the same expression pat-
terns as in IL-1� experiment. A section of the images
from scanned cDNA microarrays containing the spot
for MCP-1 is shown in Fig. 4. Comparison of the results
from both experiments shows a common group of 25
genes apparently affected by both cytokines. They ac-
count for 75% and 43% of all the identified genes in
IL-1� and TNF-� treatments, respectively. The time
pattern of expression of many of these genes was sim-
ilar with both agents. They belong to different func-
tional groups, such as chemokine (e.g., IL-8 and MCP-
1), extracellular matrix related (e.g., PAI-1 and matrix
metalloproteinase type 10), inflammation (e.g., NK4,
HLA-C, and B2M), signal transduction (e.g., ARHB,
TRAF1, PRKAR2B, and CAV1), and metabolism (e.g.,
SAT, EXT1, NNMT, and PTGS2). Thirty-three genes
affected only by TNF-� and eight by IL-1� in EC. Some
of the TNF-�-specific genes were ADD3, SCYA14,
ALDH1, PRG1, PSME1, PSME2, PSMD9, GARS,
SARS, SUI1, TSFM, TNFRSF11B, JUN, and TGFB1I1.
The IL-1�-specific genes included HMGIY, GRO1,
ZFP36, PAI2, CD47, KDR, PLCB3, and FOSL1. The
changes in expression were independently verified with
real-time PCRs and gel electrophoresis for some of these
genes (Fig. 5). In general, microarray and PCR methods
gave similar results.

To determine whether TNF-� could induce IL-1�
production in HUVEC, cell culture supernatants from
the TNF-� experiment were subjected to ELISA. IL-1�
was not detectable, indicating that the response of EC
to TNF-� was not likely the result of induction of IL-1�
(data not shown).

Effect of NF-�B inhibition on MCP-1 and IL-8 secre-
tion induced by IL-1� and TNF-�. In an earlier study,
it was shown that induction of MCP-1 and IL-8 by LPS
is exclusively through the NF-�B pathway (26). To
determine whether they are also NF-�B dependent, the
NF-�B inhibitory peptide SN50 and the inactive con-
trol peptide SN50M were given to the cells before the
cytokine treatments. LPS was used as a positive con-
trol on the effectiveness of the peptides. SN50 did not
inhibit IL-1�- or TNF-�-induced MCP-1 and IL-8 se-
cretion by blocking the translocation of NF-�B but was

Fig. 1. Correlation of microarray analysis between hybridizations
for 2 separate control duplicates (A) and for a control and a sample
treated with tumor necrosis factor-� (TNF-�) for 4 h (B). Total
cellular RNA from different samples was isolated, reverse-tran-
scribed, and hybridized to different microarrays. Acquired images
were analyzed by computer program, and clone intensities from each
sample were compared to identify transcriptionally changed genes. A
spot outside the 2 parallel lines represents a gene outside the 99.9%
confidence limit (screening threshold). HUVEC, human umbilical
vein endothelial cells.
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Fig. 2. Cluster analysis of expression profile of interleukin (IL)-1�- and TNF-�-treated HUVEC. Cluster analysis
was performed with Cluster and Treeview programs. Ratios of each gene relative to controls at different times after
IL-1� or TNF-� treatment were used to rearrange the gene list on the basis of their expression pattern. Genes with
similar upregulation (red) or downregulation (green) trend were placed close to each other. Magnitudes of ratios
are reflected from their color intensity comparable to the color-ratio bar. All genes (total 66) identified in both
treatments are displayed, so not every gene passed the screening threshold in both treatment columns. Thirty-
three and 58 genes appeared to be affected by IL-1� or TNF-�, respectively; 25 of these were common in both
treatments. EGF, epidermal growth factor.
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effective in blocking LPS stimulation of their produc-
tion (Fig. 6).

DISCUSSION

During inflammation, presumably protective re-
sponses may be inappropriately overexpressed, poten-
tially resulting in morbidity and sometimes mortality.
The proinflammatory cytokines TNF-� and IL-1� are
potent cytokines with dramatic effects on many cells.
By utilizing cDNA microarray techniques that allow
parallel, high-throughput screening of altered gene
expression, the identification of cytokine-affected
genes becomes possible. The present study investi-
gated the effects of TNF-� and IL-1� on regulation of
gene expression in EC among �4,000 genes.

TNF-� and IL-1� are the products of genes with little
homology and bind to different cell surface receptors.
However, activation of their receptors leads to the
induction or suppression of a similar set of genes in
HUVEC, including genes for chemokines, cell adhesion
molecules, procoagulants, metalloproteinases, protea-
somes, and the major histocompatibility complex. The
receptors for TNF-� and IL-1� employ similar signal-
ing pathways that involve mitogen-activated protein
(MAP) kinase cascades (6, 7, 15). Eder (9) proposed a
model in which MAP kinase kinase kinases connect the
TNF-� and IL-1� signaling pathways. A common re-
sult of this MAP kinase kinase kinase-primed pathway
is the activation of certain transcription factors, such
as NF-�B and activating protein 1 (AP-1), a het-
erodimer of c-jun and c-fos. In this study, a significant
overlapping of the affected genes by both cytokines was
noticed (25 of 33, or 75%, with IL-1� treatment; 25 of
58, or 43%, with TNF-� treatment). Some of these
genes have been well known for their roles in inflam-
mation, such as PAI-1, vascular cell adhesion molecule
type 1 (VCAM-1), IL-8, MCP-1, endothelin-1, matrix
metalloproteinase type 10, �2-microglobulin, TNF re-
ceptor-associated factor-1, and prostaglandin-endoper-
oxide synthase-2. Others, including natural killer cell
transcript-4, diubiquitin, butyrate response factor-1,
and caveolin-1, have unclear functions with respect to
inflammatory responses.

Comparison of the gene expression profile of HUVEC
in response to LPS from our earlier study (26) with the
results reported here shows that 15 genes are unique
to LPS, 30 to TNF-�, and 6 to IL-1� alone. However, 18
of these 25 genes are stimulated in common (Fig. 7).
This finding is supported by the evidence that NF-�B is
also the major transcription factor in LPS-induced
gene transcription regulation in HUVEC. Further-
more, the intracellular domain of the transmembrane
protein toll-like receptor-4, which is responsible for
LPS binding and signal transduction, is very similar to
that of IL-1� (1). Therefore, it is not surprising to find
that the group of genes identified in HUVEC in re-

Fig. 3. Number of genes with mRNA levels that changed at different
times after cytokine treatment. Number of genes outside screening
thresholds at each time point is compared for IL-1� and TNF-�
treatment. TNF-� initially affected fewer genes but induced more
gene expression changes than IL-1� at 7 and 24 h. Some genes were
altered in all time points; others had a temporal expression change.

Fig. 4. Upregulation of monocyte chemoattractant protein type 1
(MCP-1) mRNA levels in HUVEC in response to TNF-�. Confluent
HUVEC in 6-well tissue culture plates were treated with or without
TNF-� (10 ng/ml) for various times. mRNA levels of thousands of
genes were analyzed by cDNA microarray techniques. Sections of
acquired microarray images containing the spot for the MCP-1 gene
(arrows) are shown for duplicate controls (A and B) and for samples
treated with TNF-� for 4 h (C and D). MCP-1 represents one of the
genes most upregulated by cytokines in HUVEC.

Fig. 5. Independent verification of microarray results with real-time
PCR. From each sample, 1 �g total RNA was reverse-transcribed
into cDNA, and indicated genes were amplified with a LightCycler
thermal cycler. Resultant PCR products are shown after gel electro-
phoresis on 2% agarose. M, DNA molecular weight marker; C,
control; PAI, plasminogen activator inhibitor.
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sponse to IL-1� and LPS is very redundant. Because
IL-1� was not detectable in culture media from TNF-�-
or LPS-stimulated HUVEC with ELISA and TNF-�
protein production is not induced by IL-1� or LPS
alone in HUVEC (13, 22), the differential expression
patterns induced by these stimuli appeared to be
caused by an individual stimulus, not by a combination
of two or more stimuli.

Even though TNF-� and IL-1� exhibited similar
patterns of gene expression, they do not share identical
signaling pathways and functions. Each of them was
able to stimulate a unique set of genes in HUVEC. For
example, TNF-� upregulated the expression of several
members of the proteasome family, such as PSME1,
PSME2, PSMD9, and PSMA6, whereas IL-1� upregu-

lated only PSMA6. Proteasomes are involved in IL-1�-
induced MCP-1 production in HUVEC (21). The up-
regulated proteasome subunits may also imply involve-
ment of an antigen-presenting pathway in the host’s
defense against pathogen invasion. The kinetics and
extent of the altered gene expression by TNF-� and
IL-1� were not exactly the same. VCAM-1 appeared to
be stimulated by TNF-� for a longer time than IL-1�.
Suppression of PRKAR2B expression occurred earlier
and for a shorter time with TNF-� than with IL-1�
treatment.

The similarity of gene expression regulation by LPS,
TNF-�, and IL-1� does not mean that a gene affected
by all three stimuli is always controlled by the same
signaling pathway or transcription factor. TNF-� and
IL-1� are able to activate NF-�B and AP-1 in EC.
However, alteration of LPS-induced gene expression is
mainly through NF-�B, as evidenced in our earlier
study, in which pretreatment with an NF-�B translo-
cation inhibitory peptide abolished most of the tran-
scriptional regulation by LPS. In addition, transfection
of an LPS receptor, toll-like receptor-4, construct into
cells resulted in activation of NF-�B, but not AP-1 (10).
Using MCP-1 and IL-8 as the model genes, we exam-
ined whether a gene is mainly regulated by the same
transcription factor activated by different stimuli.
MCP-1 is one of the genes most affected by LPS,
TNF-�, and IL-1� in HUVEC and has been known to be
under the regulation of transcription factors including
NF-�B, AP-1, and sequence-specific transcription fac-
tor-1 (17, 24). Inhibition of NF-�B translocation greatly
suppressed LPS-induced MCP-1 and IL-8 secretion but
had no effect on their induction by TNF-� and IL-1�
(Fig. 6). This implies that AP-1 and sequence-specific
transcription factor-1 may be more potent in some
HUVEC responses to these two cytokines.

Results similar to these have been reported for 4 h of
TNF-� stimulation of HUVEC by Murakami et al. (19)
utilizing Affymetrix chips interrogating 35,000 genes.
They reported some of the most upregulated genes, and

Fig. 6. Differential effect of nuclear factor-�B (NF-�B) inhibition on
MCP-1 secretion induced by lipopolysaccharide (LPS), IL-1�, and
TNF-�. Confluent HUVEC in 48-well tissue culture plates were
pretreated with 50 �M NF-�B translocation inhibitory peptide SN50
(SN50 � stimulus) or 50 �M control peptide SN50M (SN50M �
stimulus) for 1 h before administration of Escherichia coli LPS (50
ng/ml), IL-1� (10 U/ml), or TNF-� (10 ng/ml) for 4 h. Negative
controls (no stimulus) and positive controls (stimulus only) were
done in parallel. Cell culture supernatants were collected at the end
of treatments and analyzed by ELISA for MCP-1 (A) and IL-8 (B).
Concentrations were normalized to mean of negative controls and
shown with standard deviation (n � 3–5). Inhibition of NF-�B
translocation greatly reduced stimulated MCP-1 and IL-8 secretion
by LPS, but not by IL-1� or TNF-�. *P 	 0.05; **P 	 0.01; ***P 	
0.001 compared with SN50 � LPS.

Fig. 7. Number of genes identified in HUVEC in response to LPS,
TNF-�, and IL-1� and their distribution. Each of the 3 ellipses has
an area representing total number of genes affected by 1 stimulus.
Twenty-five genes are enclosed by IL-1� (75% of 33 genes) and
TNF-� (43% of 58 genes) treatments. By inclusion of earlier obser-
vations (26), 23 of the 38 genes responding to LPS also responded to
treatment with either cytokine. There may be considerable redun-
dancy in the influence of inflammatory mediators on HUVEC gene
expression.
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many of them were also found in this study, including
TNF receptor-associated factor-1, IL-8, MCP-1, frac-
talkine, E-selectin, VCAM-1, GRO, and spermidine/
spermine N1-acetyltransferase.

Taken together, the highly redundant transcrip-
tional effects by proinflammatory agents may point to a
partial explanation for the failure of clinical trials
attempting to block any single cytokine or LPS in
patients succumbing to sepsis and systemic inflamma-
tion. The effects of removing one syndrome-causing
agent may be compensated by others with similar
functions. Thus an agent that interferes with a tran-
scription factor or a step in an involved signaling path-
way might prove more efficacious.

We are deeply indebted to Dr. George M. Vaughan for critical
reading of the manuscript and many helpful suggestions in the
treatment of data analysis.
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